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Demand Estimation in the Presence of
Stochastic Trend and Seasonality: The Case

of Meat Demand in the United Kingdom

Iain Fraser and Imad A. Moosa

If budget shares have stochastic trend or seasonality or both, then demand equations based on the
assumption of deterministic trend and deterministic seasonality will be mis-specified. We test this
proposition by estimating a Linearized Almost Ideal (LAI) demand system for meat demand in the
United Kingdom using Harvey’s structural time series methodology. We demonstrate that the model
specification allowing for stochastic trend and deterministic seasonality performs best in terms of
diagnostic tests and goodness of fit measures. It is also shown that the model with stochastic trend
is better at out-of-sample forecasting.
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When estimating demand systems for food,
it is common practice to assume that bud-
get shares have deterministic trends and sea-
sonality, implying that a model with a con-
stant intercept, a time trend and deterministic
seasonal dummies is correctly specified. For
example, Piggott et al., Burton and Young,
Kinnucan et al., Arnade and Pick, and Alston
et al. all employ deterministic trends and sea-
sonal dummies in demand estimation. How-
ever, assuming seasonality is deterministic
when it is actually stochastic will yield a
mis-specified model. Similarly, a determinis-
tic trend may or may not be true, but it
should not be assumed a priori. A preferable
approach would be to test for deterministic
trend and seasonality against stochastic trend
and seasonality alternatives.1
The objective of this article is to show

that if deterministic trend or seasonality or
both are assumed a priori, then the resulting
model may be mis-specified, and any infer-
ence based on the estimated values of the
coefficients would have problems. We also
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demonstrate that the out-of-sample forecast-
ing power of the correctly specified model
is superior. For this purpose, three versions
of a linearized almost ideal demand (LAI)
demand system for meat are estimated based
on the assumptions of (i) deterministic trend
and deterministic seasonality (DTDS), (ii)
stochastic trend and deterministic seasonal-
ity (DTSS), and (iii) stochastic trend and
stochastic seasonality (STSS).
The stochastic trend and seasonality are

incorporated into the LAI model follow-
ing the structural time series methodol-
ogy of Harvey (1989)—seemingly unrelated
time series equations (SUTSE). This is the
time series equivalent of seemingly unre-
lated regressions (SUR). Harvey and Mar-
shall used this methodology to model the
demand for energy in the UK. Several modi-
fications and extensions to SUTSE have been
introduced, which we also employ in this
article.
We begin by specifying the basic LAI

model and illustrate how stochastic seasonal-
ity and stochastic trend are incorporated into
this specification. We also describe the struc-
tural time series methodology that is used
to estimate the system of demand equations.
Next, we detail the data used in the study
and the results obtained from the estimation.
Conclusions are provided at the end of the
article.
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Model Specification

The LAI model with a time trend and deter-
ministic seasonal dummies included for the
budget share of commodity i, wi, is specified
as

wit = �i+�i�t +
∑
k

�ikDkt(1)

+ ∑
j

�ij logPjt +i log
(
Yt

Pt

)
+�it

where t is the time period �t = 1� � � � � T ��Pjt

is the price of commodity j , Yt is total expen-
diture on all commodities, Pt is a Laspeyres
price index,2 �t is a time trend, Dkt are
zero–one seasonal dummies and �it is the
stochastic error term. To yield economically
meaningful results, we impose homogeneity,
adding-up and Slutsky symmetry:

∑
i �i = 1,∑

i �ij =
∑

j �ij = 0,
∑

i i = 0, and �ij = �ji.
With deterministic trend and seasonality,

the LAI model coefficients �i, �i, and �ik in
equation (1) are assumed to be constant. If
these coefficients are statistically significant,
then the budget shares are driven by deter-
ministic trend and seasonality. This assump-
tion is highly restrictive because factors such
as taste and habits may very well lead to
changes in the values of these coefficients
over time. Changes in the values of �i, �i,
and �ik may be abrupt, leading to a struc-
tural break, or gradual, leading to a smoothly
changing stochastic trend. Hence, it is likely
that the equations incorporating determin-
istic trend and seasonality are mis-specified
and unlikely to pass structural stability tests.
An alternative approach used in this study

is to specify a general model that encom-
passes deterministic trend and seasonality
and allows a test for deterministic trend and
seasonality against a stochastic trend and sea-
sonality alternative. In this case, equation (1)
is modified to

wit = �it +�it(2)

+ ∑
j

�ij logPjt +i log
(
Yt

Pt

)
+�it

where �it is a stochastic trend, �it is a stochas-
tic seasonal component, and �it is now rede-
fined as the random component (or irregular
component) such that �it ∼NID�0��2�i �.

2 Moschini and Buse both show that the LAI model is not
invariant to changes in the unit of measurement when the Stone
index is used and recommend the Laspeyres price index instead.

The stochastic trend, which represents the
long-term movement in a series, can be rep-
resented by

�it = �i�t−1+�i�t−1+�it(3)

�it = �i�t−1+ �it(4)

where �it ∼NID�0��2�i �, and �it ∼NID�0��2�i �.
Here �it is a random walk with a drift fac-
tor, �it , which follows a first-order autore-
gressive process as represented by equation
(4). This is a general representation of the
trend that encompasses many other possibil-
ities. For example, this process collapses to a
simple random walk with drift if �2�i = 0, and
to a deterministic linear trend if �2�i = 0 as
well. If, on the other hand, �2�i = 0 whereas
�2�i �= 0, then the process will have a trend that
changes relatively smoothly.
To model stochastic seasonality, we use a

trigonometric specification which, for some
even s, is written as

�it =
s/2∑
k=i

�i�k�t(5)

where �i�k�t is given by

�i�k�t = �i�k�t−1 cosk(6)

+�∗
i�k�t−1 sink+�i�k�t

�∗
i�k�t =−�i�k�t−1 sink(7)

+�∗
i�k�t−1 cosk+�∗

i�k�t

for k = 1� � � � � s/2−1, where k = 2�k/s and
�i�k�t =−�i�k�t−1+�i�k�t�(8)

for k = s/2, where �i�k�t ∼ NID�0��2�i � and
�∗
i�k�t ∼ NID�0��2�∗i �. Following Harvey and
Scott, we assume that �2�i = �2�∗i

to make
numerical optimization easier. Intuitively,
stochastic seasonality means that the seasonal
factor corresponding to each season is not
fixed, but varies over time. However, if �2�i =
�2�∗i = 0 we will have deterministic rather than
stochastic seasonality, implying constant sea-
sonal factors. When the seasonal factors are
graphed over the time span of the sample
period they will look like horizontal lines
under deterministic seasonality and smooth
curves with changing slopes under stochastic
seasonality. The trigonometric representation
of seasonality allows for a smoother change
in the seasonals.
The extent to which the trend and seasonal

components evolve over time depends on the
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values of the variances �2�i , �
2
�i
, and �2�i , which

are called hyperparameters. What is impor-
tant is the size of �2�i , �

2
�i
, and �2�i relative to

�2�i . For example, the bigger the value of �
2
�i

relative to �2�i , the more past observations are
discounted in constructing a seasonal pattern
for the forecast function.
Before applying our model and present-

ing results, we need to detail several limita-
tions of the generalized stochastic trend and
seasonality model. First, it is arguable, that
budget shares are bounded variables and so
they cannot have stochastic trends. As Shea
(p. 351) noted in his study of the term struc-
ture of interest rates, some variables (such as
interest rates) cannot, in an unqualified sense,
be nonstationary if nonstationarity is taken
to mean that the variable is unbounded (pre-
sumably the same applies to budget shares).
However, Shea argues that such considera-
tions should not strictly prevent us from mod-
eling such a variable with a stochastic trend.
He justifies this position on the grounds that
there are no models without some limita-
tions in accurately depicting the behavior of
the underlying variable—there is a trade-off
between theoretical desirability and empiri-
cal convenience and accuracy.3
Second, we may well be better served in

attempting to identify and measure variables
that cause the stochastic trend and season-
ality effects instead of allowing the effect
of these variables to be represented by the
behavior of the stochastic components. There
have been attempts to build explicit variables
that model the effects that we attempt to
proxy via a trend and seasonal dummies (for
example, McGuirk et al.). Although it may
be preferable to use explicit variables (Davis)
as opposed to the proxies employed in this
article, many datasets still rely on the use of
such proxy measures. This can be the result
of data limitations, nonquantifiable variables
and measurement errors. Furthermore, even
when researchers have introduced such vari-
ables, Moschini and Moro noted, “Whereas,

3 There is a difference between testing for a unit root and
testing for a stochastic trend with the methodology employed
here. In the unit root literature, the null hypothesis is that a
variable has a unit root (stochastic trend in that sense) against
the alternative of stationarity. In this article, the null hypothe-
sis of a deterministic trend is represented by is �2�i = 0. Whereas
the alternative of a stochastic trend is represented by �2�i = 0.
Unit root testing is criticised on the grounds that it ignores the
alternative of deterministic trend (Harvey and Scott). Harvey
(1997) provides further insightful criticism of traditional time
series analysis and the benefits of the methodology employed in
this article.

in principle, this approach is attractive, it still
involves rather arbitrary choices, or may turn
out to be econometrically equivalent to a
trend.” (p. 248).
Although these are legitimate concerns

about our generalized approach, they also
apply to deterministic trend and seasonal
dummy variables. That is, if budget shares
are bounded they cannot have a determin-
istic trend either, and clearly the deter-
ministic trend and seasonal dummies are
accounting for (presumably unobservable)
underlying influences just like the stochastic
specification. Hence, the generalization rep-
resents an improvement over the conven-
tional approach of including only a determin-
istic trend and seasonal dummies.

Data and Empirical Results

The results presented in this article are based
on a sample of quarterly, seasonally unad-
justed per capita data covering the period
1960:1–1994:4. The data series were obtained
from the National Food Surveys of house-
hold food expenditure (excludes food pur-
chased and consumed outside the home) in
Great Britain, undertaken by the Ministry of
Agriculture, Fisheries and Food. The data are
average price and per capita quantity con-
sumed for beef, lamb, pork and chicken. The
beef and lamb classifications are based on
carcass meat only and include veal and mut-
ton. For pork, bacon and ham (uncooked
and cooked) are included. Chicken includes
all poultry. The analysis is restricted to the
budget shares of beef, lamb and chicken
because only three equations can be esti-
mated independently.
We estimate the system of equations repre-

sented by (2) using SUTSE. Because we have
three equations (commodities) we estimate
the �3× 3� variance-covariance matrices of
each time series component: �� for the lev-
els of the trends, �� for the slopes, �� for the
seasonal components and �� for the random
components. SUTSE is more efficient than
single equation estimation because it uti-
lizes the information contained in the cross-
correlations of the residuals. By estimating
the covariance matrices of the time series
components of the budget shares, we take
into account the fact that the components
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Table 1. Estimation Results for the Seemingly Unrelated Time Series Models

DTDS STDS STSS

Parameter Beef Lamb Chicken Beef Lamb Chicken Beef Lamb Chicken

�t −0�273 0�134 0�607 0�040 0�087 0�437 0�021 0�101 0�042
�−4�98� �3�56� �16�79� �0�48� �1�41� �7�13� �0�25� �1�64� �6�63�

�t −0�0002 −0�001 0�001 −0�001 −0�001 0�002 −0�001 −0�001 0�002
�−2�67� �−15�6� �35�2� �−1�22� �−4�26� �7�25� �−1�02� �−4�22� �5�87�

�1t 0�016 −0�008 −0�004 0�018 −0�008 −0�004 −0�013 0�007 0�003
�7�2� �−5�14� �−2�21� �10�3� �−5�83� �−3�09� �−4�04� �3�10� �1�30�

�2t −0�012 0�0007 0�006 −0�013 0�001 0�007 0�014 −0�002 −0�008
�−4�34� �0�42� �3�42� �−6�86� �0�69� �4�95� �4�18� �−0�68� �−3�14�

�3t −0�015 0�012 0�0003 −0�017 0�013 0�001 −0�002 0�002 −0�001
�−6�85� �7�71� �0�19� �−9�89� �8�53� �0�77� �−0�67� �0�87� �−0�27�

�b −0�065 −0�074 −0�079
�−2�69� �−2�47� �−2�63�

�l 0�055 −0�025 0�041 −0�018 0�055 −0�02
�2�01� �−1�54� �1�64� �−1�04� �2�12� �−1�11�

�c −0�02 0�021 0�028 0�018 0�0001 0�013 0�012 −0�001 0�013
�−1�95� �2�36� �3�22� �0�68� �0�001� �0�76� �0�48� �0�02� �0�70�

 0�187 −0�011 −0�107 0�082 0�002 −0�048 0�088 −0�002 −0�042
�9�91� �−0�84� �−8�73� �3�00� �0�12� �−2�36� �3�24� �−0�11� �−2�02�

R2
s 0�14 0�34 0�24 0�32 0�34 0�33 0�30 0�32 0�30

�̃ 0�015 0�010 0�011 0�013 0�010 0�01 0�013 0�011 0�011
AIC −8�32 −8�01 −8�87 −8�53 −8�97 −9�01 −8�50 −8�93 −8�95
SBC −8�14 −8�85 −8�63 −8�31 −8�77 −8�83 −8�25 −8�70 −8�74
DW 1�23 1�54 1�35 1�86 1�82 1�80 1�87 1�86 1�84
Q 55�47 20�27 30�12 11�93 10�23 10�75 11�83 10�60 9�24

Note: The Q-statistic is distributed as %2 (10) for the DTDS model, %2 (8) for the STDS model, and %2 (7) for the STSS model. The t-statistics are given
in parentheses.

must be related given that the shares sum to
one.4
The assumption of DTDS is obtained by

imposing the restriction �� = �� = �� = 0.
Then we relax the assumption �� = �� = 0
to allow for a stochastic trend, whereas main-
taining the deterministic seasonality assump-
tion �� = 0 (STDS). Finally, we also relax
the assumption �� = 0 to allow for STSS. All
estimation is carried out using STAMP 5.0
(Structural Time Series Analyser, Modeller
and Predictor) of Koopman et al.
Parameter estimates, along with various

diagnostic and goodness of fit measures are
presented in table 1.
The time-varying parameter estimates

reported in table 1 pertain to the final state
vector when the information in the full sam-
ple has been utilized. We could have pre-
sented time-varying parameter estimates for
the entire time period covered by the data,
but for the analysis this was not. In table 1, �t

is the level of the trend, which is equivalent

4 Estimates of the variance-covariance matrices are available
from the authors on request.

to the constant term in a conventional regres-
sion; �t is the slope of the trend, which
is equivalent to the coefficient on a time
trend in a conventional regression equation;
�1t is the seasonal component correspond-
ing to the last quarter in the sample, and �2t
and �3t are the seasonal components corre-
sponding to observations T -1 and T -2 where
T is the sample size. The time-varying esti-
mates exhibit a pattern in terms of sign,
statistical significance and magnitude that
relates to model specification. For example,
the seasonal components differ depending on
whether a deterministic or stochastic specifi-
cation is employed.
Goodness of fit measures that are reported

include the modified coefficients of determi-
nation R2

s , the standard error of the estimated
equation (�̃) as well as information crite-
ria: Akaike’s information criterion (AIC) and
the Schwarz Bayesian criterion (SBC). Two
serial correlation diagnostics are reported:
the Durbin–Watson (DW) statistic and the
Ljung–Box Q statistic.
The DTDS model has a positive R2

s , imply-
ing that it is better than a simple random
walk with drift model. However, there seems
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to be some residual serial correlation as indi-
cated by the DW and the Q statistics. The
existence of serial correlation is a likely con-
sequence of model mis-specification.
The STDS model is certainly better than

the DTDS model in terms of the diagnostic
tests. Serial correlation disappears, whereas
the goodness of fit measures improve as indi-
cated by a higher R2

s , a lower �̃, and lower
AIC and SBC. Although the STSS model
does not show any sign of serial correla-
tion, it does not show any improvement in
the goodness of fit over the STDS model. In
fact, the AIC and SBC rise, whereas the R2

s

declines. Hence, from our initial inspection of
the results STDS is the preferred model.
As the three models estimated are nested,

we employed a likelihood ratio test to see if
the apparent differences between the mod-
els are statistically significant (Harvey and
Marshall). The STSS model is the unre-
stricted specification. The STDS model has
one restriction, �2�i = 0. The DTDS model
has three restrictions, �2�i , �2�i and �2�i all
equal to zero. To undertake the likelihood
ratio test, we estimated the log likelihood for
each of the equations in each of the models,
which in turn yielded the nine test statistics
reported in table 2.
The results in table 2 confirm the differ-

ences between the models previously identi-
fied. We are able to reject the null hypoth-
esis at the five percent level of significance
when we compare DTDS versus STDS and
DTDS versus STSS. However, we are unable

Table 2. Likelihood Ratio Test
Statistic Results

Likelihood Ratio
Share Equation Statistics p-values

DTDS vs STDS
Beef 44.80 0.0000
Lamb 10.20 0.0060
Chicken 10.42 0.0054

DTDS vs STSS
Beef 47.08 0.0000
Lamb 9.60 0.0222
Chicken 26.49 0.0000

STDS vs STSS
Beef 2.29 0.1302
Lamb 0.60 0.4385
Chicken 0.42 0.5169

Note: The likelihood ratio test is distributed %2, where the degrees of
freedom are number of restrictions. DTDS vs STDS has 2 restrictions,
DTDS vs STSS has 3 restrictions, and STDS vs STSS has 1 restriction.

to reject the null when we compare STDS
versus STSS. Thus, STDS is the most parsi-
monious preferred model.
Another more informal means of eval-

uating the models is to assess the eco-
nomic reasonableness of the various elasticity
estimates. Uncompensated and compensated
price elasticity estimates and expenditure
elasticity estimates are reported in table 3.
All elasticity estimates are for the end val-

ues of the data period given that the param-
eter estimates are for the final state vector.
The results in table 3 show that the uncom-
pensated and compensated own price elastic-

Table 3. Uncompensated, Compensated
and Expenditure Elasticity Estimates

Model and
Equation Beef Lamb Chicken Pork

Uncompensated Elasticities
DTDS
Beef −1�32 0�37 0�032 0�132
Lamb 0�06 −1�15 0�26 −0�11
Chicken −0�20 0�16 −0�65 −0�03
Pork −0�10 −0�31 0�03 −0�79

STDS
Beef −1�27 0�26 0�19 0�07
Lamb 0�08 −1�12 0�03 −0�05
Chicken −0�001 −0�0003 −0�83 −0�06
Pork −0�03 −0�15 −0�09 −0�85

STSS
Beef −1�30 0�36 0�14 0�06
Lamb 0�12 −1�13 0�04 −0�07
Chicken −0�03 −0�003 −0�85 −0�04
Pork −0�05 −0�22 −0�07 −0�82

Compensated Elasticities
DTDS
Beef −0�96 0�59 0�11 0�32
Lamb 0�35 −0�98 0�32 0�04
Chicken 0�42 0�40 −0�57 0�18
Pork 0�48 −0�01 0�14 −0�54

STDS
Beef −0�99 0�50 0�37 0�28
Lamb 0�31 −0�93 0�11 0�12
Chicken 0�31 0�26 −0�63 0�17
Pork 0�37 0�17 0�11 −0�57

STSS
Beef −1�00 0�59 0�31 0�27
Lamb 0�35 −0�94 0�18 0�09
Chicken 0�29 0�25 −0�66 0�20
Pork 0�36 0�10 0�11 −0�55

Expenditure Elasticities
DTDS 1�56 0�93 0�33 0�80
STDS 1�24 1�01 0�70 0�89
STSS 1�26 0�99 0�74 0�87
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ity estimates for all three models have the
correct sign according to theory.5 There are
some differences of magnitude between the
elasticity estimates that are more pronounced
for the uncompensated estimates. For exam-
ple, the uncompensated own price elastic-
ity for chicken increases from −0�718 in the
DTDS model to −0�871 and −0�877 in the
STDS model and the STSS model, respec-
tively. There is also a smaller increase for
pork. The uncompensated cross-price elas-
ticity estimates are sensible, although not
all meat types are found to be gross sub-
stitutes. Compensated cross-price elasticity
estimates show that all meat types are net
substitutes with some marked differences
between specifications. There are also differ-
ences between the expenditure elasticity esti-
mates that are particularly pronounced for
beef and chicken. For beef, the expenditure
elasticity estimates fall when moving to the
stochastic trend and seasonality models but
for all other meats they increase. Although,
all the models yield sensible elasticity esti-
mates, the different specifications do impact
the magnitude of the elasticity estimates.
Hence, it is important to use the correct spec-
ification, which in this case was found to be
STDS.

Out-of-Sample Forecasting

We now examine the out-of-sample forecast-
ing power of the STDS model against the
DTDS model. The models are estimated over
the period 1960:1–1989:4 and subsequently
used to forecast the budget shares over the
period 1990:1–1994:4. Table 4 reports two
measures of forecasting power: the mean
absolute error and the root mean square
error. The results indicate that the STDS
model has better out-of-sample performance.
A question that may legitimately arise here

is whether the difference between the fore-
casting powers (as measured by the RMSE)
of the two models is statistically significant.
For this purpose we use the Ashley, Granger
and Schmalensee test employed by Kastens
and Brester for the difference of the RMSE’s
of two models. The Ashley, Granger and
Schmalensee test requires that we estimate
the linear regression

Dt = �0+�1�St −	S�+wt(9)

5 The compensated own price elasticities indicated that a nec-
essary condition for concavity is satisfied. This condition held for
all data points in the sample.

Table 4. Forecasting Performance of
Models

Root
Mean Mean

Absolute Square
Meat/Model Error Error

Beef
STDS 0.0138 0.0232
DTDS 0.0379 0.0437

Lamb
STDS 0.0137 0.0158
DTDS 0.0196 0.0236

Chicken
STDS 0.0121 0.0197
DTDS 0.0154 0.0278

Ashley, Granger and Schmalensee Test
Meat t��0� p-values t��1� p-values

Beef 12.34 0.0000 −1�23 0.1172
Chicken 2.18 0.0213 −1�27 0.1101
Lamb 9.67 0.0000 −0�08 0.4685

where Dt = e1t − e2t , St = e1t + e2t , 	S is the
mean of S, e1t is the out-of-sample error at
time t of the model with the higher RMSE
(DTDS), e2t is the out-of-sample error at
time t of the model with the lower RMSE
(STDS) and t = 1�2� � � � � n. If the sample
mean of the forecast errors from either
model is negative, the forecast error series
must be multiplied by −1 before running the
regression.
The estimates of the intercept term (�0)

and the slope (�1) are used to test the statisti-
cal difference between the RMSE of the two
models. If the estimates of �0 and �1 are both
positive, then an F -test of the joint hypoth-
esis �0 = �1 = 0 is appropriate. However, if
one of the estimates is negative and statisti-
cally significant, then the test is inconclusive.
Further, if the estimate is negative and statis-
tically insignificant, then the test remains con-
clusive, and significance is determined using
the upper-tail of the t-test on the positive
coefficient estimate.
The results of the Ashley, Granger and

Schmalensee test for the beef, lamb and
chicken equations are presented in the lower
part of table 4. In all cases, at least one coef-
ficient is negative, in which case we resort
to the t-test. The coefficient �0 is positive
and significant at the one percent level for
beef and lamb, and at the five percent level
for chicken. This result shows us that the
RMSE for the STDS model is statistically sig-
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nificantly smaller, so this model is superior
in out-of-sample forecasting. The results pre-
sented here support the use of a stochastic
trend even though we are only dealing with
a short forecasting period.

Conclusion

For the UK meat demand data examined
in this study, the results demonstrate that
a model incorporating STDS using Harvey’s
SUTSE methodology is statistically preferred
to a model incorporating a DTDS. Differ-
ences in the magnitude of the elasticity esti-
mates derived using the alternative model
specifications have also been identified. The
statistically preferred model (STDS) was
also shown to be superior in out-of-sample
forecasting performance. Of course, differ-
ent applications may find different empiri-
cal results, but this article does demonstrate
the importance of allowing and testing for
stochastic trend and seasonality in applied
demand studies.

[Received March 1999;
accepted June 2001.]
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